Effect of silibinin in human colorectal cancer cells: Targeting the activation of NF-κB signaling

    loading  Checking for direct PDF access through Ovid


Chronic inflammation is one of the primary causes of colorectal cancer (CRC), and major inflammatory pathways implicated in CRC are cyclooxygenase-2 (COX-2) and iNOS; both regulated by nuclear factor-kappa B (NF-κB) suggesting that inhibitors of these pathways could be ideal against CRC. Silibinin has shown promising efficacy against various malignancies including CRC, and therefore here we assessed whether silibinin targets NF-κB activation and associated signaling as a mechanism of its anti-inflammatory and anti-cancer effects in CRC. Our results indicated that silibinin treatment (50–200 μM) of human CRC SW480, LoVo, and HT29 cells strongly inhibits tumor necrosis factor α-induced NF-κB activation together with decreased nuclear levels of both p65 and p50 sub-units. Silibinin also significantly increased IκBα level with a concomitant decrease in phospho-IκBα, without any effect on TNFR1, TRADD, and RIP2, indicating its inhibitory effect on IκB kinase α activity. Next we assessed the effect of oral silibinin feeding on NF-κB pathway in SW480 (COX-2 negative) and LoVo (COX-2 positive) tumor xenografts in nude mice. Together with its inhibitory efficacy on tumor growth and progression, silibinin inhibited NF-κB activation in both xenografts. The protein levels of various NF-κB-regulated molecules such as Bcl-2, COX-2, iNOS, VEGF, and MMPs were also decreased by silibinin in both cell culture studies and xenograft analyses, suggesting its potential to alter NF-κB transcriptional activity. Together, these findings are highly significant in establishing for the first time that silibinin suppresses CRC growth and progression possibly through its anti-inflammatory activity by interfering with NF-κB activation and thus has potential against human CRC. © 2011 Wiley Periodicals, Inc.

Related Topics

    loading  Loading Related Articles