LoVo Colon Cancer Cells Resistant to Oxaliplatin Overexpress c-MET and VEGFR-1 and Respond to VEGF With Dephosphorylation of c-MET

    loading  Checking for direct PDF access through Ovid


Oxaliplatin-resistant LoVo colon cancer cells overexpressing c-MET and VEGFR-1 were selected to study several signaling pathways involved in chemoresistance, as well as the effect of increasing amounts of VEGF in the regulation of c-MET. In comparison with chemosensitive LoVo colon cancer cells, oxaliplatin-resistant cells (LoVoR) overexpress and phosphorylate c-MET, upregulate the expression of transmembrane and soluble VEGFR-1 and, unexpectedly, downregulate VEGF. In addition, LoVoR cells activate other transduction pathways involved in chemoresistance such as Akt, β-catenin-TCF4 and E-cadherin. While c-MET is phosphorylated in LoVoR cells expressing low levels of VEGF, c-MET phosphorylation decreases when recombinant VEGF is added into the culture medium. Inhibition of c-MET by VEGF is mediated by VEGFR-1, since phosphorylation of c-MET in the presence of VEGF is restored after silencing VEGFR-1. Dephosphorylation of c-MET by VEGF suggests that tumors coexpressing VEGFR-1 and c-MET may activate c-MET as a result of anti-VEGF therapy. © 2015 Wiley Periodicals, Inc.

Related Topics

    loading  Loading Related Articles