Genomic Background Drives the Divergence of Duplicated Amylase Genes at Synonymous Sites in Drosophila


    loading  Checking for direct PDF access through Ovid

Abstract

In some Drosophila species, there are two types of greatly diverged amylase (Amy) genes (Amy clusters 1 and 2), each encoding active amylase isozymes. Cluster 1 is located at the middle of its chromosomal arm, and the region has a normal local recombination rate. However, cluster 2 is near the centromere, and this region is known to have a reduced recombination rate. Although nonsynonymous substitutions follow a molecular clock, synonymous substitutions were accelerated in cluster 2 after gene duplications. This resulted in a higher GC content at the third codon position (GC3) and codon usage bias in cluster 1, and lower GC3 content and codon usage bias in the cluster 2. However, no systematic difference in GC content was observed in the first and second codon positions or the 3′-flanking regions. Therefore, differences in local recombination rate rather than mutation bias might explain the divergence at synonymous sites between the two Amy clusters within species (Hill-Robertson effect). Alternatively, the different patterns and levels of expression between the two clusters may imply that the reduced expression level in cluster 2 caused by chromatin potentiation decreased the codon bias. Both of these hypotheses imply the importance of the genomic background as a driving force of divergence between non-tandemly duplicated genes.

    loading  Loading Related Articles