Divergent Regulation of ER and Kiss Genes by 17β-Estradiol in Hypothalamic ARC Versus AVPV Models

    loading  Checking for direct PDF access through Ovid

Abstract

Kisspeptin (Kiss) and G-protein-coupled receptor (Gpr)54 have emerged as key regulators of reproduction. 17β-estradiol (E2)-mediated regulation of these neurons is nuclei specific, where anteroventral periventricular (AVPV) Kiss neurons are positively regulated by E2, whereas arcuate nucleus (ARC) neurons are inhibited. We have generated immortalized Kiss cell lines from male and female adult-derived murine hypothalamic primary culture, as well as cell lines from microdissected AVPV and ARC from female Kiss-green fluorescent protein (GFP) mice. All exhibit endogenous Kiss-1 expression, estrogen receptors (ER)s (ERα, ERβ, and Gpr30), as well as known markers of AVPV Kiss neurons in the mHypoA-50 and mHypoA-Kiss/GFP-4, vs markers of ARC Kiss neurons in the mHypoA-55 and the mHypoA-Kiss/GFP-3 lines. There was an increase in Kiss-1 mRNA expression at 24 hours in the AVPV lines and a repression of Kiss-1 mRNA at 4 hours in the ARC lines. An E2-mediated decrease in ERα mRNA expression at 24 hours in the AVPV cell lines was detected, and a significant decrease in Gpr30, ERα, and ERβ mRNA levels at 4 hours in the ARC cell lines was evident. ER agonists and antagonists determined the specific ERs responsible for mediating changes in gene expression. In the AVPV, ERα is required but not ERβ or GPR30, vs the ARC Kiss-expressing cell lines that require GPR30, and either ERα and/or ERβ. We determined cAMP response element-binding protein 1 was necessary for the down-regulation of Kiss-1 mRNA expression using small interfering RNA knockdown in the ARC cell model. These studies elucidate some of the molecular events involved in the differential E2-mediated regulation of unique and specific Kiss neuronal models.

Related Topics

    loading  Loading Related Articles