IL-27 suppresses SKOV3 cells proliferation by enhancing STAT3 and inhibiting the Akt signal pathway

    loading  Checking for direct PDF access through Ovid

Abstract

Ovarian cancer continues to be the most lethal gynecologic malignancy worldwide. IL-27 is a novel member of the IL-12 cytokine family. The aim of this study was to investigate the effects of IL-27 on the ovarian cystadenocarcinoma cell line SKOV3 and determine possible mechanisms underlying its effect. We stably transfected an IL-27 plasmid, empty vector, IL-27 shRNA or negative control into SKOV3 cells. Cell proliferative activity was evaluated using a WST-1 cell proliferation assay kit. Cell viability was quantified by measurements of lactate dehydrogenase release. The mRNA levels of nine genes were tested by q-PCR. Western blotting was used to verify apoptosis and signal pathways. We found that the IL-27 plasmid significantly enhanced cytotoxicity and inhibited the proliferation of SKOV3 cells. Caspase-3 protein was augmented by IL-27 plasmid and abated by IL-27 shRNA. The incremental expression of IL-27 activated the STAT3 pathway and attenuated the Akt pathway. The over-expression of IL-27 could significantly upregulate a series of antitumor cytokines including IL-6, IL-12 and interferon-γ and down-regulate protumor factors such as TLR4 and NF-κB1. Our data show that IL-27 has direct antitumor capacity in ovarian cancer cells via enhancing apoptosis by inducing the STAT3 pathway and restraining the Akt pathway.

Précis: IL-27 enhanced the cytotoxicity and suppressed the proliferation of ovarian cancer cells by activating STAT3 and inhibiting the Akt signal pathway. IL-27 plays an important role in antitumor activity against epithelial ovarian cancer.

Related Topics

    loading  Loading Related Articles