Biomarkers associated with disease severity in allergic and nonallergic asthma

    loading  Checking for direct PDF access through Ovid


Asthma is a complex, chronic respiratory disease with a wide clinical spectrum. Use of high-throughput technologies has generated a great deal of data that require validation. In this work the objective was to validate molecular biomarkers related to asthmatic disease types in peripheral blood samples and define their relationship with disease severity. With this purpose, ninety-four previously described genes were analyzed by qRT-PCR in 30 healthy control (HC) subjects, 30 patients with nonallergic asthma (NA), 30 with allergic asthma (AA), and 14 patients with allergy (rhinitis) but without asthma (AR). RNA was extracted from peripheral blood mononuclear cells (PBMCs) using the TRIzol method. After data normalization, principal component analysis (PCA) was performed, and multiple approaches were used to test for differential gene expression. Relevance was defined by RQ (relative quantification) and corrected P value (<0.05). Protein levels of IL-8 and MSR1 were determined by ELISA and Western blot, respectively.

PCA showed 4 gene expression clusters that correlated with the 4 clinical phenotypes. Analysis of differential gene expression between clinical groups and HCs revealed 26 statistically relevant genes in NA and 69 in AA. Protein interaction analysis revealed IL-8 to be a central protein. Average levels of IL-8 were higher in the asthma patients' sera (NA: 452.28 ± 357.72, AA: 327.46 ± 377 pg/ml) than in HCs (286.09 ± 179.10), but without reaching statistical significance. Nine genes, especially MSR1, were strongly associated with severe NA.

In conclusion, several molecular biomarkers of asthma have been defined, some of which could be useful for the diagnosis or prognosis of disease severity.

Related Topics

    loading  Loading Related Articles