Th17 activation by dendritic cells stimulated with gamma-irradiatedStreptococcus pneumoniae

    loading  Checking for direct PDF access through Ovid


Highlightsr-SP shows modest binding and internalization to BM-DCs compared with h-SP or f-SP.r-SP induces phenotypic maturation of BM-DCs less potently than h-SP or f-SP.r-SP induces lower cytokine expression in BM-DCs compared with h-SP or f-SP.r-SP-sensitized BM-DCs preferentially promote Th17 polarization.Dendritic cells (DCs) play an important role in antigen presentation, which is an essential step for the induction of antigen-specific adaptive immunity. Inactivated bacterial whole cell vaccines have been widely used to prevent many bacterial infections because they elicit good immunogenicity due to the presence of various antigens and are relatively inexpensive and easy to manufacture. Recently, gamma-irradiated whole cells of nonencapsulated Streptococcus pneumoniae were developed as a broad-spectrum and serotype-independent multivalent vaccine. In the present study, we generated gamma-irradiated S. pneumoniae (r-SP) and investigated its capacity to stimulate mouse bone marrow-derived DCs (BM-DCs) in comparison with heat-inactivated and formalin-inactivated S. pneumoniae (h-SP and f-SP, respectively). r-SP showed an attenuated binding and internalization level to BM-DCs when compared to h-SP or f-SP. r-SP weakly induced the expression of CD80, CD83, CD86, MHC class I, and PD-L2 compared with h-SP or f-SP. Furthermore, r-SP less potently induced IL-6, TNF-α, and IL-23 expression than h-SP or f-SP but more potently induced IL-1β expression than h-SP or f-SP in BM-DCs. Since Th17-mediated immune responses are known to be important for the protection against pneumococcal infections, r-SP-primed DCs were co-cultured with splenocytes or splenic CD4+ T cells. Interestingly, r-SP-sensitized BM-DCs markedly induced IL-17A+ CD4+ T cells whereas h-SP- or f-SP-sensitized BM-DCs weakly induced them. Collectively, these results suggest that r-SP could be an effective pneumococcal vaccine candidate eliciting Th17-mediated immune responses by stimulation of DCs.

    loading  Loading Related Articles