The Ustilago maydis Cys2His2-type zinc finger transcription factor Mzr1 regulates fungal gene expression during the biotrophic growth stage

    loading  Checking for direct PDF access through Ovid

Abstract

Summary

The smut fungus Ustilago maydis establishes a biotrophic relationship with its host plant maize to progress through sexual development. Here, we report the identification and characterization of the Cys2His2-type zinc finger protein Mzr1 that functions as a transcriptional activator during host colonization. Expression of the U. maydis mig2 cluster genes is tightly linked to this phase. Upon conditional overexpression, Mzr1 confers induction of a subset of mig2 genes during vegetative growth and this requires the same promoter elements that confer inducible expression in planta. Furthermore, expression of the mig2-4 and mig2-5 genes during biotrophic growth is strongly reduced in cells deleted in mzr1. DNA-array analysis led to the identification of additional Mzr1-induced genes. Some of these genes show a mig2-like plant-specific expression pattern and Mzr1 is responsible for their high-level expression during pathogenesis. Mzr1 function requires the b-dependently regulated Cys2His2-type cell cycle regulator Biz1, indicating that two stage-specific regulators mediate gene expression during host colonization. In spite of a role as transcriptional activator during biotrophic growth, mzr1 is not essential for pathogenesis; however, conditional overexpression interfered with proliferation during vegetative growth and mating ability, caused a cell separation defect, and triggered filamentous growth. We discuss the implications of these findings.

Related Topics

    loading  Loading Related Articles