Escherichia colipersister cells suppress translation by selectively disassembling and degrading their ribosomes

    loading  Checking for direct PDF access through Ovid

Abstract

Summary

Bacterial persisters are rare, phenotypically distinct cells that survive exposure to multiple antibiotics. Previous studies indicated that formation and maintenance of the persister phenotype are regulated by suppressing translation. To examine the mechanism of this translational suppression, we developed novel methodology to rapidly purify ribosome complexes from persister cells. We purified His-tagged ribosomes fromEscherichia colicells that over-expressed HipA protein, which induces persister formation, and were treated with ampicillin to remove antibiotic-sensitive cells. We profiled ribosome complexes and analyzed the ribosomal RNA and protein components from these persister cells. Our results show that (i) ribosomes in persisters exist largely as inactive ribosomal subunits, (ii) rRNAs and tRNAs are mostly degraded and (iii) a small fraction of the ribosomes remain mostly intact, except for reduced amounts of seven ribosomal proteins. Our findings explain the basis for translational suppression in persisters and suggest how persisters survive exposure to multiple antibiotics.

Related Topics

    loading  Loading Related Articles