Amyloid-β and hyperphosphorylated tau synergy drives metabolic decline in preclinical Alzheimer's disease

    loading  Checking for direct PDF access through Ovid

Abstract

This study was designed to test the interaction between amyloid-β and tau proteins as a determinant of metabolic decline in preclinical Alzheimer's disease (AD). We assessed 120 cognitively normal individuals with [18F]florbetapir positron emission tomography (PET) and cerebrospinal fluid (CSF) measurements at baseline, as well as [18F]fluorodeoxyglucose ([18F]FDG) PET at baseline and at 24 months. A voxel-based interaction model was built to test the associations between continuous measurements of CSF biomarkers, [18F]florbetapir and [18F]FDG standardized uptake value ratios (SUVR). We found that the synergistic interaction between [18F]florbetapir SUVR and CSF phosphorylated tau (p-tau) measurements, rather than the sum of their independent effects, was associated with a 24-month metabolic decline in basal and mesial temporal, orbitofrontal, and anterior and posterior cingulate cortices (P < 0.001). In contrast, interactions using CSF amyloid-β1-42 and total tau biomarkers did not associate with metabolic decline over a time frame of 24 months. The interaction found in this study further support the framework that amyloid-β and hyperphosphorylated tau aggregates synergistically interact to cause downstream AD neurodegeneration. In fact, the regions displaying the metabolic decline reported here were confined to brain networks affected early by amyloid-β plaques and neurofibrillary tangles. Preventive clinical trials may benefit from using a combination of amyloid-β PET and p-tau biomarkers to enrich study populations of cognitively normal subjects with a high probability of disease progression in studies, using [18F]FDG as a biomarker of efficacy.

Related Topics

    loading  Loading Related Articles