Gain-based Selection of Ambient Media Services in Pervasive Environments

    loading  Checking for direct PDF access through Ovid

Abstract

Providing ambient media services in the pervasive environments is a challenging issue. This is due to the fact that users have different satisfaction level in using different media services in varying contexts. We address this issue by proposing a gain-based media service selection mechanism. Gain refers to the extent a media service is satisfying to a user in a particular context. In our proposed mechanism, the gain is dynamically computed by adopting a user-centered approach that includes user's context, profile, interaction history, and the reputation of a service. The dynamically computed gain is used in conjunction with the cost of using a service (e.g. media subscription and energy consumption cost) to derive our service selection mechanism. We adopt a combination of greedy and dynamic programming based solution to obtain a set of services that would maximize the user's overall gain in the ambient environment by minimizing the cost constraint. Experimental results demonstrate the potential of this approach.

Related Topics

    loading  Loading Related Articles