Roles of μ-Opioid Receptors in GABAergic Synaptic Transmission in the Striosome and Matrix Compartments of the Striatum

    loading  Checking for direct PDF access through Ovid

Abstract

The striatum is divided into two compartments, the striosomes and extrastriosomal matrix, which differ in several cytochemical markers, input–output connections, and time of neurogenesis. Since it is thought that limbic, reward-related information and executive aspects of behavioral information may be differentially processed in the striosomes and matrix, respectively, intercompartmental communication should be of critical importance to proper functioning of the basal ganglia-thalamocortical circuits. Cholinergic interneurons are in a suitable position for this communication since they are preferentially located in the striosome-matrix boundaries and are known to elicit a conditioned pause response during sensorimotor learning. Recently, μ-opioid receptor (MOR) activation was found to presynaptically suppress the amplitude of GABAergic inhibitory postsynaptic currents in striosomal cells but not in matrix cells. Disinhibition of cells in the striosomes is further enhanced by inactivation of the protein kinase C cascade. We discuss in this review the possibility that MOR activation in the striosomes affects the activity of cholinergic interneurons and thus leads to changes in synaptic efficacy in the striatum.

Related Topics

    loading  Loading Related Articles