Ultra-fast steady state free precession and its application to in vivo 1H morphological and functional lung imaging at 1.5 tesla

    loading  Checking for direct PDF access through Ovid

Abstract

Purpose

The speed limit for three-dimensional Fourier-encoded steady state free precession (SSFP) imaging is explored on a clinical whole body system and pushed toward a pulse repetition time (TR) close to or even below the 1 ms regime; in the following referred to as ultra-fast SSFP imaging.

Methods

To this end, contemporary optimization strategies, such as efficient gradient switching patterns, partial echoes, ramp sampling techniques, and a target-related design of excitation pulses were applied to explore the lower boundaries in TR for SSFP-based Cartesian imaging.

Results

Generally, minimal TR was limited in vivo by peripheral nerve stimulation, allowing a TR ˜1 ms for isotropic resolutions down to about 2 mm. As a result, ultra-fast balanced SSFP provides artifact-free images even for targets with severe susceptibility variations, and native high-resolution structural and functional in vivo 1H imaging of the human lung is demonstrated at 1.5 T.

Conclusion

On clinical whole body MRI systems, the TR of SSFP-based Cartesian imaging can be pushed toward the 1 ms regime. As a result, ultra-fast SSFP protocols might represent a promising new powerful approach for SSFP-based imaging, not only for lung but also in a variety of clinical and scientific applications.

Related Topics

    loading  Loading Related Articles