Dynamic Glucose Enhanced (DGE) MRI for Combined Imaging of Blood–Brain Barrier Break Down and Increased Blood Volume in Brain Cancer

    loading  Checking for direct PDF access through Ovid



Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown.


Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose.


DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared with contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (P < 0.005). Both CEST and relaxation effects contribute to the signal change.


DGE MRI is a feasible technique for studying brain tumor enhancement reflecting differences in tumor blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. Magn Reson Med 74:1556–1563, 2015. © 2015 Wiley Periodicals, Inc.

Related Topics

    loading  Loading Related Articles