Resistive-pulse detection of short dsDNAs using a chemically functionalized conical nanopore sensor

    loading  Checking for direct PDF access through Ovid


Aims: To develop nanopore resistive-pulse sensors for the detection of short (50 base-pair [bp] and 100 bp) DNAs. Materials & methods: Conically shaped nanopores were chemical etched into polyethylene terphthalate membranes. The as-etched membrane had anionic carboxylate sites on the pore walls. Neutral and hydrophilic ethanolamine functional groups were attached to these carboxylate sites using well-established EDC (1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride) chemistry. Results & discussion: The ethanolamine-functionalized pores were used to detect 50 and 100 bp DNAs via the resistive-pulse method. The resistive-pulse signature produced by the 50 bp DNA could be distinguished from that of the 100 bp DNA with these sensors. Conclusions: Attachment of ethanolamine to the carboxylate groups on the pore wall lowered the anionic charge density on the wall. This mitigated the problem of electrostatic rejection of the anionic DNAs from the pore and enabled the detection of these DNA analytes.

Related Topics

    loading  Loading Related Articles