Nanotechnology to drive stem cell commitment

    loading  Checking for direct PDF access through Ovid


Stem cells (SCs) are undifferentiated cells responsible for the growth, homeostasis and repair of many tissues. The maintenance and survival of SCs is strongly influenced by several stimuli from the local microenvironment. The majority of signaling molecules interact with SCs at the nanoscale level. Therefore, scaffolds with surface nanostructures have potential applications for SCs and in the field of regenerative medicine. Although some strategies have already reached the field of cell biology, strategies based on modification at nanoscale level are new players in the fields of SCs and tissue regeneration. The introduction of the possibility to perform such modifications to these fields is probably due to increasing improvements in nanomaterials for biomedical applications, as well as new insights into SC biology. The aim of the present review is to exhibit the most recent applications of nanostructured materials that drive the commitment of adult SCs for potential clinical applications.

Related Topics

    loading  Loading Related Articles