Restoration of p53 function leads to tumour regression in vivo

    loading  Checking for direct PDF access through Ovid

Abstract

Tumorigenesis is a multi-step process that requires activation of oncogenes and inactivation of tumour suppressor genes1. Mouse models of human cancers have recently demonstrated that continuous expression of a dominantly acting oncogene (for example,Hras, KrasandMyc) is often required for tumour maintenance2-5; this phenotype is referred to as oncogene addiction6. This concept has received clinical validation by the development of active anticancer drugs that specifically inhibit the function of oncoproteins such as BCR-ABL, c-KIT and EGFR7-10. Identifying additional gene mutations that are required for tumour maintenance may therefore yield clinically useful targets for new cancer therapies. Although loss of p53 function is a common feature of human cancers11, it is not known whether sustained inactivation of this or other tumour suppressor pathways is required for tumour maintenance. To explore this issue, we developed a Cre-loxP-based strategy to temporally control tumour suppressor gene expressionin vivo.Here we show that restoring endogenous p53 expression leads to regression of autochthonous lymphomas and sarcomas in mice without affecting normal tissues. The mechanism responsible for tumour regression is dependent on the tumour type, with the main consequence of p53 restoration being apoptosis in lymphomas and suppression of cell growth with features of cellular senescence in sarcomas. These results support efforts to treat human cancers by way of pharmacological reactivation of p53.

Related Topics

    loading  Loading Related Articles