Observation of the rareB0s→μ+μ− decay from the combined analysis of CMS and LHCb data

    loading  Checking for direct PDF access through Ovid


The standard model of particle physics describes the fundamental particles and their interactions via the strong, electromagnetic and weak forces. It provides precise predictions for measurable quantities that can be tested experimentally. The probabilities, or branching fractions, of the strangeBmeson (Symbol) and theB0 meson decaying into two oppositely charged muons (μ+ andμ−) are especially interesting because of their sensitivity to theories that extend the standard model. The standard model predicts that theSymbolandSymboldecays are very rare, with about four of the former occurring for every billionSymbolmesons produced, and one of the latter occurring for every ten billionB0 mesons1. A difference in the observed branching fractions with respect to the predictions of the standard model would provide a direction in which the standard model should be extended. Before the Large Hadron Collider (LHC) at CERN2started operating, no evidence for either decay mode had been found. Upper limits on the branching fractions were an order of magnitude above the standard model predictions. The CMS (Compact Muon Solenoid) and LHCb (Large Hadron Collider beauty) collaborations have performed a joint analysis of the data from proton–proton collisions that they collected in 2011 at a centre-of-mass energy of seven teraelectronvolts and in 2012 at eight teraelectronvolts. Here we report the first observation of theSymbolµ+µ− decay, with a statistical significance exceeding six standard deviations, and the best measurement so far of its branching fraction. Furthermore, we obtained evidence for theSymbolµ+µ−decay with a statistical significance of three standard deviations. Both measurements are statistically compatible with standard model predictions and allow stringent constraints to be placed on theories beyond the standard model. The LHC experiments will resume taking data in 2015, recording proton–proton collisions at a centre-of-mass energy of 13 teraelectronvolts, which will approximately double the production rates ofSymbolandB0 mesons and lead to further improvements in the precision of these crucial tests of the standard model.

Related Topics

    loading  Loading Related Articles