Quantifying crater production and regolith overturn on the Moon with temporal imaging

    loading  Checking for direct PDF access through Ovid

Abstract

Random bombardment by comets, asteroids and associated fragments form and alter the lunar regolith and other rocky surfaces. The accumulation of impact craters over time is of fundamental use in evaluating the relative ages of geologic units. Crater counts and radiometric ages from returned samples provide constraints with which to derive absolute model ages for unsampled units on the Moon and other Solar System objects1,2,3,4. However, although studies of existing craters and returned samples offer insight into the process of crater formation and the past cratering rate, questions still remain about the present rate of crater production, the effect of early-stage jetting during impacts and the influence that distal ejecta have on the regolith. Here we use Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) temporal (‘before and after’) image pairs to quantify the contemporary rate of crater production on the Moon, to reveal previously unknown details of impact-induced jetting, and to identify a secondary impact process that is rapidly churning the regolith. From this temporal dataset, we detected 222 new impact craters and found 33 per cent more craters (with diameters of at least ten metres) than predicted by the standard Neukum production and chronology functions for the Moon2. We identified broad reflectance zones associated with the new craters that we interpret as evidence of a surface-bound jetting process. We also observe a secondary cratering process that we estimate churns the top two centimetres of regolith on a timescale of 81,000 years—more than a hundred times faster than previous models estimated from meteoritic impacts (ten million years)5.

Related Topics

    loading  Loading Related Articles