Burial, Maturation, and Petroleum Generation History of the Arkoma Basin and Ouachita Foldbelt, Oklahoma and Arkansas


    loading  Checking for direct PDF access through Ovid

Abstract

Removed overburden, burial, maturation, and petroleum generation analysis indicates that maturity in the Arkoma Basin and the Ouachita Foldbelt is explained effectively using simple burial models that account for the significant surface erosion that has occurred and assuming geothermal gradients similar to present-day gradients have been approximately constant through geologic time. Regional models, based on analysis at 115 well locations, indicate that from 5,000 to 15,000 ft (1.5–4.5 km) of section, differing with location from north to south and west to east, has been removed from the Arkoma Basin region, and as much as 25,000–40,000 ft (7.5–12 km) have been removed from areas of the Ouachita Foldbelt. Based on burial and thermal history reconstruction, increasing maturation from west to east across the basin is primarily the result of increasing overburden and subsequent surface erosion from west to east. The models predict most publicly available vitrinite reflectance data within a factor of 1.5 at two standard deviations. Comparison of model and measured reflectance-depth trends in six wells indicates that hydrothermal fluid movement should not have modified reflectance by more than approximately 20% in the center of the basin. Analysis indicates that most of the basin is overmature for oil production from intervals below the Spiro Sandstone, except to the north and northwest. Although thermal maturities are high, methane is stable throughout the basin. Except for the basal Arbuckle Group, all formations were thermally immature for oil generation prior to burial by the Mississippian and Morrowan in the Ouachita Foldbelt of Oklahoma and by the Atokan and Desmoinesian over most of the basin and study area. In the deeper part of the present basin, all strata entered and passed through the oil window during or within 10 My after Atokan time. Because no additional major quantities of hydrocarbons were generated after Atokan time, the hydrocarbons must have been emplaced and trapped during this brief time interval.

    loading  Loading Related Articles