The role of nitric oxide in the apoptosis of neurons in the retina of the human fetal eye

    loading  Checking for direct PDF access through Ovid


The locations of NADPH-diaphorase (NADPH-d), inducible NO synthase (iNOS), and TUNEL-immunoreactive neurons in the retina of human fetuses collected during the first to third trimesters of pregnancy were studied. High levels of NADPH-d activity were seen in the inner segments of light-sensitive cells, amacrine cells, and ganglion cells. The population of NADPH-d-positive amacrine cells included three types of neuron. Type 1 neurons were large and had sparse dendritic fields occupying the inner nuclear and outer retinal layers. Small type 2 neurons were located in the inner retinal layer. Ectopic amacrine cells, type 3, were located in the outer part of the ganglion layer. A high density of NADPH-d-positive neurons was seen in the central part of the retina, surrounding the central fovea and optic disk area. NADPH-d activity increased progressively during ontogenesis and correlated with the appearance of immunoreactive iNOS in neurons. iNOS labeled a subpopulation of amacrine and ganglion cells, which appeared at 20-21 weeks of development and reached a peak of immunoreactivity by the end of the third trimester. TUNEL-immunopositive neuron nuclei with signs of apoptotic destruction were seen at 30-31 weeks of pregnancy. The greatest apoptotic index was seen in the ganglion and amacrine cell populations. These data identify NO as a factor mediating apoptosis of neurons during the critical period of differentiation of interneuronal connections in the human retina.

Related Topics

    loading  Loading Related Articles