Post-acquisition hippocampal blockade of the NMDA receptor subunit GluN2A but not GluN2B sustains spatial reference memory retention

    loading  Checking for direct PDF access through Ovid


HighlightsPost-acquisition infusion of NVP-AAM077 suppresses spatial memory decay.Post-acquisition infusion of Ro 25-6981 does not suppress spatial memory decay.The NMDAR subunit GluN2A, but not GluN2B, is important for spatial memory deterioration.While it has been shown that the blockade of N-methyl-d-aspartate type glutamate receptors (NMDARs) impairs memory acquisition, recent studies have reported that the post-acquisition administration of NMDAR antagonists suppresses spatial memory decay. These findings suggest that NMDARs are important not only for the acquisition of new memories but also for the decay of previously acquired memories. The present study investigated the contributions of specific NMDAR subunits to spatial memory decay using NVP-AAM077 (NVP), an NMDAR antagonist that preferentially binds to GluN2A subunits, and the selective GluN2B blocker Ro 25-6981 (Ro). Following Morris water maze training (four trials/day for four days), nvp and/or Ro were subchronically infused into the rat hippocampus for five days. Seven days after training, NVP-treated rats and NVP/Ro-treated rats explored the target area significantly more than the control and Ro-treated rats. These results demonstrate that post-acquisition treatment with NVP, but not Ro, suppresses the forgetting of previously acquired spatial memories. The NVP-treated rats more persistently explored the target area in the second test, which was conducted one day after the first, while the NVP/Ro-treated rats did not, which suggest that Ro treatment downregulates memory retention. In conclusion, the present results indicate that the NMDAR GluN2A and GluN2B subunits contribute to spatial memory deterioration and maintenance, respectively.

    loading  Loading Related Articles