Basolateral amygdala calpain is required for extinction of contextual fear-memory

    loading  Checking for direct PDF access through Ovid

Abstract

Extinction of fear-memory is essential for emotional and mental changes. However, the mechanisms underlying extinction of fear-memory are largely unknown. Calpain is a type of calcium-dependent protease that plays a critical role in memory consolidation and reconsolidation. Whether calpain functions in extinction of fear-memory is unknown, as are the molecular mechanisms. In this study, we investigated the pivotal role of calpain in extinction of fear-memory in mice, and assessed its mechanism. Conditioned stimulation/unconditioned stimulation-conditioned stimulation paradigms combined with pharmacological methods were employed to evaluate the action of calpain in memory extinction. Our data demonstrated that intraperitoneal or intra-basolateral amygdala (BLA) injection of calpain inhibitors could eliminate extinction of fear-memory in mice. Moreover, extinction of fear-memory paradigm-activated BLA calpain activity, which degraded suprachiasmatic nucleus circadian oscillatory protein (SCOP) and phosphatase and tensin homolog (PTEN), subsequently contributing to activation of a protein kinase B (AKT)-mammalian target of the rapamycin (mTor) signaling pathway. Additionally, cAMP-response element binding protein (CREB) phosphorylation was also augmented following extinction of fear-memory. Calpain inhibitor blocked the signaling pathway activation induced by extinction of fear-memory. Additionally, intra-BLA injection of rapamycin or cycloheximide also blocked the extinction of fear-memory. Conversely, intra-BLA injection of PTEN inhibitor, bpV, reversed the effect of calpeptin on extinction of fear-memory. Together, our data confirmed the function of BLA calpain in extinction of fear-memory, likely via degrading PTEN and activating AKT-mTor-dependent protein synthesis.

Related Topics

    loading  Loading Related Articles