A Spurious Equilibria-free Learning Algorithm for the Blind Separation of Non-zoer Skewness Signals

    loading  Checking for direct PDF access through Ovid

Abstract

We present a new learning algorithm for the blind separation of independent source signals having non-zero skewness (the 3rd-order cumulant) (the source signals have non-symmetric probability distribution.), from their linear mixtures. It is shown that for a class of source signals whose probability distribution functions is not symmetric, a simple adaptive learning algorithm using quadratic function (f(x) = x2) is very efficient for blind source separation task. It is proved that all stable equilibria of the proposed learning algorithm are desirable solutions. Extensive computer simulation experiments confirmed the validity of the proposed algorithm.

Related Topics

    loading  Loading Related Articles