A Winner-Take-All Neural Networks of N Linear Threshold Neurons without Self-Excitatory Connections

    loading  Checking for direct PDF access through Ovid

Abstract

Multistable neural networks have attracted much interests in recent years, since the monostable networks are computationally restricted. This paper studies a N linear threshold neurons recurrent networks without Self-Excitatory connections. Our studies show that this network performs a Winner-Take-All (WTA) behavior, which has been recognized as a basic computational model done in brain. The contributions of this paper are: (1) It proves by mathematics that the proposed model is Non-Divergent. (2) An important implication (Winner-Take-All) of the proposed network model is studied. (3) Digital computer simulations are carried out to validate the performance of the theory findings.

Related Topics

    loading  Loading Related Articles