Inflammation in Traumatic Brain Injury: Role of Cytokines and Chemokines*

    loading  Checking for direct PDF access through Ovid

Abstract

A traumatic injury to the adult mammalian central nervous system (CNS), such as a stab wound lesion, results in reactive astrogliosis and the migration of hematogenous cells into the damaged neural tissue. The roles of cytokines and growth factors released locally by the damaged endogenous cells are recognized in controlling the cellular changes that occur following CNS injury. However, the role of chemokines, a novel class of chemoattractant cytokines, is only recently being studied in regulating inflammatory cell invasion in the injured/diseased CNS (1). The mRNAs for several chemokines have been shown to be upregulated in experimental allergic encephalomyelitis (EAE), an inflammatory demyelinating disease of the CNS, but chemokine expression in traumatic brain injury has not been studied in detail. Astrocytes have been demonstrated to participate in numerous processes that occur following injury to the CNS. In particular, astrocytic expression of cytokines and growth factors in the injured CNS has been well reviewed (2). Recently a few studies have detected the presence of chemokines in astrocytes following traumatic brain injury (3,4). These studies have suggested that chemokines may represent a promising target for future therapy of inflammatory conditions. This review summarizes the events that occur in traumatic brain injury and discusses the roles of resident and non-resident cells in the expression of growth factors, cytokines and chemokines in the injured CNS.

Related Topics

    loading  Loading Related Articles