Paired-Pulse Facilitation of Transmitter Release at Different Levels of Extracellular Calcium Concentration

    loading  Checking for direct PDF access through Ovid

Abstract

High-frequency synaptic activity can cause facilitation of transmitter release due to accumulation of “residual Ca2+” at the nerve terminal. However, the mechanism of this phenomenon is still under debate. Here we show that, using extracellular recording from frog cutaneous pectoris muscle, paired-pulse facilitation (PPF) at the frog neuro-muscular junction decays in two or three-exponential manner depending upon the extracellular Ca2+ concentration ([Ca2+]e). First, second and “early” PPF components are analyzed and described in this study. Considering the dependence of PPF on [Ca2+]e, existence of several specific high-affinity intra-terminal Ca2+-binding sites that underlie the facilitation of transmitter release at the frog neuro-muscular junction is proposed.

Related Topics

    loading  Loading Related Articles