Protective Effect Against 17β-Estradiol on Neuronal Apoptosis in Hippocampus Tissue Following Transient Ischemia/Recirculation in Mongolian Gerbils via Down-Regulation of Tissue Transglutaminase Activity

    loading  Checking for direct PDF access through Ovid


We analyzed the protective effect of 17β-estradiol (17β-ED) injection against delayed neuronal death in the hippocampus tissue of the brain in Mongolian gerbils after transient ischemia/recirculation treatment, especially in relation with bcl-2 gene expression and enzymatic activity changes of caspase-3 and tissue transglutaminase (tTGase). Daily intraperitoneal injection of 17β-ED to the animal after the ischemia stimulated the expression of an apoptosis suppressor gene, bcl-2, in the hippocampal tissue for a week. The gradually increasing apoptotic enzyme activity of caspase-3 and increased number of TUNEL positive fragmented neuronal nuclei caused by ischemic attack in the gerbil brain were clearly suppressed by 17β-ED administration. The reduced activity and enzyme protein of tTGase, a neurodegenerative marker of apoptosis in the hippocampus after ischemia, were also restored to nearly normal levels by 17β-ED injection. These results suggest that daily 17β-ED administration to the gerbil after transient ischemic insult with progressing neuronal deteriorative changes in hippocampus tissue can effectively prevent apoptotic changes through a molecular cascade involving gene expression regulation.

Related Topics

    loading  Loading Related Articles