Active sleep-related depolarization of feline trigemino-thalamic afferent terminals

    loading  Checking for direct PDF access through Ovid


PRESYNAPTIC depolarization of trigemino-thalamic (TGT) terminals may contribute to modulation of ascending oro-facial somatosensory information during active (or rapid eye movement) sleep. The relative excitability of TGT terminals was inferred from changes in the current required to maintain an antidromic firing probability of 50% (EC50) during quiet wakefulness as compared to active sleep. Depolarization or hyperpolarization of TGT terminals was defined as a decrease or increase, respectively, in the EC50. Overall, the EC50of 8 TGT terminals was reduced by a mean 8.8 ± 3.6 μA during active sleep relative to quiet wakefulness. This result suggests that depolarization of TGT terminals, which may act to suppress the transfer of sensory information from the trigeminal nucleus to the thalamus, occurs during active sleep.

Related Topics

    loading  Loading Related Articles