Estrogen dissociates Tau and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit in postischemic hippocampus

    loading  Checking for direct PDF access through Ovid

Abstract

During cerebral ischemia, part of the damage associated with the hyperactivation of glutamate receptors results from the hyperphosphorylation of the microtubule-associated protein Tau. Previous studies have shown that estradiol treatment reduces neural damage after cerebral ischemia. Here, we show that transient occlusion of the middle cerebral artery results in the hyperphosphorylation of Tau and in a significant increase in the association of Tau with glycogen synthase kinase-3β and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid type glutamate receptor subunits 2/3 in the hippocampus. Estradiol treatment decreased hippocampal injury, inhibited glycogen synthase kinase-3β and decreased the hyperphosphorylation of Tau and the interaction of Tau with glycogen synthase kinase-3β and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor. These findings suggest that ischemia produces a strong association between Tau and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor, and estradiol can exert at least part of its neuroprotective activity through inhibition of glycogen synthase kinase-3β.

Related Topics

    loading  Loading Related Articles