Vitamin D3 repressed astrocyte activation following lipopolysaccharide stimulation in vitro and in neonatal rats

    loading  Checking for direct PDF access through Ovid


Vitamin D3 has been reported to be an immunity modulator and high levels of vitamin D3 are correlated with a decreased risk for developing diseases in the central nervous system. Astrocytes are important immune cells and contribute toward inflammation during neurological diseases. The vitamin D receptor has been reported to be expressed in astrocytes; however, the effect of vitamin D3 on astrocyte activation has not been studied. Here, we found that lipopolysaccharide stimulation in astrocytes could enhance the expression of vitamin D receptor and Cyp27B1, which encodes the enzyme for converting vitamin D3 into its active form. Vitamin D3 suppressed the expression of proinflammatory cytokines tumour necrosis factor-α, interleukin-1β, vascular endothelial growth factor, and also TLR4 in activated astrocytes. Astrocyte activation was further found to be suppressed after the administration of vitamin D3 in neonatal rats injected with lipopolysaccharide in vivo. We demonstrated the antiactivation effect of vitamin D3 in astrocytes after lipopolysaccharide stimulation. Considering the function of reactive astrocytes in augmenting inflammatory response in neurodegeneration and brain injury, the finding that vitamin D3 administration may inhibit astrocyte activation may be potentially useful for the treatment of central nervous system disorders.

    loading  Loading Related Articles