Disrupted metabolic and functional connectivity patterns of the posterior cingulate cortex in cirrhotic patients: a study combining magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging

    loading  Checking for direct PDF access through Ovid

Abstract

The association between metabolic activity and functional coupling of the posterior cingulate cortex (PCC) in cirrhotic patients remains undefined. Therefore, this study aimed to assess the association of functional coupling with metabolic patterns of PCC in resting cirrhotic patients. Twenty-six cirrhotic patients, including 10 with hepatic encephalopathy (HE) and 16 without HE, were assessed, alongside 21 control participants. Single-voxel proton magnetic resonance spectroscopy (MRS) of the PCC and resting-state functional MRI (rs-fMRI) were performed on a 3.0-T MR scanner. The ratios of all metabolites to creatine (Cr) and rs-fMRI parameters [including amplitude of low-frequency fluctuation (ALFF), node degree (Ki), and betweenness centrality (Bi)] were evaluated by analysis of variance. Associations of metabolite ratios with rs-fMRI parameters and venous ammonia were determined by Pearson’s correlation analysis. Lower chlorine (Cho)/Cr (0.6±0.2 vs. 0.9±0.1, P<0.001) and higher ALFF (1.3±0.5 vs. 1.1±0.3, P=0.01) were found in cirrhotic patients in comparison with controls. In cirrhotic patients, the ALFF values correlated negatively with Cho/Cr (r=−0.397, P=0.044). Meanwhile, Bi values showed positive associations with glutamine+glutamate/Cr (r=0.500, P=0.009) and N-acetyl aspartate/Cr (r=0.581, P=0.006). In the HE subgroup, Ki correlated positively with Cho/Cr (r=0.867, P=0.001). In cirrhotic patients without HE, Bi values showed a high positive correlation with glutamate+glutamine/Cr (r=0.690, P=0.013). These findings suggest a close association between metabolic activity and functional coupling of the PCC in cirrhotic patients, especially those with HE, whose node degree of the PCC shows an overt positive correlation with Cho/Cr.

Related Topics

    loading  Loading Related Articles