CRISPR-mediated SOX9 knockout inhibits GFAP expression in retinal glial (Müller) cells

    loading  Checking for direct PDF access through Ovid

Abstract

Müller cells, as the predominant glial element in the sensory retina, play a crucial role in healthy and diseased retina. Overactivation of Müller cells in response to damage is detrimental to the retina tissue. Current research shows that inhibiting glial fibrillary acidic protein (GFAP), a sensitive indicator of Müller cell activation, attenuated glial reactions and promoted neuroprotection. Recent evidence suggests that the transcript factor SOX9 (sex-determining region Y box 9), part of the SOX family, regulates GFAP expression of astrocytes in the central nervous system. However, in retina Müller cells, it is still unknown whether GFAP can be downregulated by reduced SOX9 function. The present results show that clustered regularly interspaced short palindromic repeats/Cas9-mediated SOX9 knockout not only inhibited GFAP expression in rat Müller cells but also attenuated cell migration ability. These results suggest that inhibition of SOX9 activity may be a novel therapeutic strategy for reduction of glial cell activity.

Related Topics

    loading  Loading Related Articles