EEG default mode network in the human brain: Spectral regional field powers

    loading  Checking for direct PDF access through Ovid


Eyes-closed (EC) and eyes-open (EO) are essential behaviors in mammalians, including man. At resting EC-EO state, brain activity in the default mode devoid of task-demand has recently been established in fMRI. However, the corresponding comprehensive electrophysiological conditions are little known even though EEG has been recorded in humans for nearly 80 years. In this study, we examined the spatial characteristics of spectral distribution in EEG field powers, i.e., sitting quietly with an EC and EO resting state of 3 min each, measured with high-density 128-ch EEG recording and FFT signal analyses in 15 right-handed healthy college females. Region of interest was set at a threshold at 90% of the spectral effective value to delimit the dominant spatial field power of effective energy in brain activity. Low-frequency delta (0.5–3.5 Hz) EEG field power was distributed at the prefrontal area with great expansion of spatial field and enhancement of field power (t= – 2.72,p< 0.02) from the EC to the EO state. Theta (4–7 Hz) EEG field power was distributed over the fronto-central area and leaned forward from EC to the EO state but with drastic reduction in field power (t= 4.04,p< 0.01). The middle-frequency alpha-1 (7.5–9.5 Hz) and alpha-2 (10–12 Hz) EEG powers exhibited bilateral distribution over the posterior areas with an anterior field in lower alpha-1. Both showed significantly reduction of field powers (respectively, W = 120,p< 0.001 for alpha-1;t= 4.12,p< 0.001 for alpha-2) from EC to the EO state. Beta-1 (13–23 Hz) exhibited a similar spatial region over the posterior area as in alpha-2 and showed reduction of field power (t= 4.42,p< 0.001) from EC to the EO state. In contrast, high-frequency beta-2 and gamma band exhibited similar, mainly prefrontal distribution in field power, and exhibited no change from EC to the EO state. Corresponding correlation analyses indicated significant group association between EC and EO only in the field powers of delta (r= 0.95,p< 0.001) and theta (r= 0.77,p< 0.001) band. In addition, the great inter-individual variability (90 folds in alpha-1, 62 folds in alpha-2) in regional field power was largely observed in the EC state (10 folds) than the EO state in subjects. To summarize, our study depicts a network of spectral EEG activities simultaneously operative at well defined regional fields in the EC state, varying specifically between EC and EO states. In contrast to transient EEG spectral rhythmic dynamics, current study of long-lasting (e.g. 3 min) spectral field powers can characterize state features in EEG. The EEG default mode network (EEG-DMN) of spectral field powers at rest in the respective EC or EO state is valued to serve as the basal electrophysiological condition in human brain. In health, this EEG-DMN is deemed essential for evaluation of brain functions without task demands for gender difference, developmental change in age span, and brain response to task activation. It is expected to define brain dysfunction in disease at resting state and with consequences for sensory, affective and cognitive alteration in the human brain.

Related Topics

    loading  Loading Related Articles