Less head motion during MRI under task than resting-state conditions

    loading  Checking for direct PDF access through Ovid

Abstract

Head motion reduces data quality of neuroimaging data. In three functional magnetic resonance imaging (MRI) experiments we demonstrate that people make less head movements under task than resting-state conditions. In Experiment 1, we observed less head motion during a memory encoding task than during the resting-state condition. In Experiment 2, using publicly shared data from the UCLA Consortium for Neuropsychiatric Phenomics LA5c Study, we again found less head motion during several active task conditions than during a resting-state condition, although some task conditions also showed comparable motion. In the healthy controls, we found more head motion in men than in women and more motion with increasing age. When comparing clinical groups, we found that patients with a clinical diagnosis of bipolar disorder, or schizophrenia, move more compared to healthy controls or patients with ADHD. Both these experiments had a fixed acquisition order across participants, and we could not rule out that a first or last scan during a session might be particularly prone to more head motion. Therefore, we conducted Experiment 3, in which we collected several task and resting-state fMRI runs with an acquisition order counter-balanced. The results of Experiment 3 show again less head motion during several task conditions than during rest. Together these experiments demonstrate that small head motions occur during MRI even with careful instruction to remain still and fixation with foam pillows, but that head motion is lower when participants are engaged in a cognitive task. These finding may inform the choice of functional runs when studying difficult-to-scan populations, such as children or certain patient populations. Our findings also indicate that differences in head motion complicate direct comparisons of measures of functional neuronal networks between task and resting-state fMRI because of potential differences in data quality. In practice, a task to reduce head motion might be especially useful when acquiring structural MRI data such as T1/T2-weighted and diffusion MRI in research and clinical settings.

Related Topics

    loading  Loading Related Articles