Neural correlates of familial obesity risk and overweight in adolescence


    loading  Checking for direct PDF access through Ovid

Abstract

BackgroundRates of adolescent obesity and overweight are high. The offspring of overweight parents are at increased risk of becoming obese later in life. Investigating neural correlates of familial obesity risk and current overweight status in adolescence could help identify biomarkers that predict future obesity and that may serve as novel targets for obesity interventions.ObjectiveOur primary aim was to use functional MRI to compare neural responses to words denoting high or low energy density (ED) foods and non-foods, in currently lean adolescents at higher compared with lower familial risk for obesity, and in overweight compared with lean adolescents. Secondary aims were to assess group differences in subjective appetite when viewing food and non-food words, and in objective ad libitum intake of high-ED foods in a laboratory setting.DesignWe recruited 36 adolescents (14-19y), of whom 10 were (obese/overweight “overweight”), 16 lean with obese/overweight mothers (lean high-risk, “lean-HR”), and 10 lean with lean mothers (lean low-risk, “lean-LR”). All underwent fMRI scanning while they viewed words representing high-ED foods, low-ED foods, or non-foods, and provided appetitive ratings in response to each word stimulus. They then consumed a multi-item ad libitum buffet meal.ResultsFood compared with non-food words activated a distributed emotion/reward system including insula and pregenual anterior cingulate cortex (ACC). Participants who were at increasing risk for obesity exhibited progressively weaker activation of an attentional/regulatory system including dorsolateral prefrontal cortex (PFC), dorsal ACC, and basal ganglia nuclei (activation was greatest in lean-LR, intermediate in lean-HR, and weakest in the overweight group). These group differences were most apparent for neural responses to high-compared with low-ED foods. Lean-HR (compared with lean-LR and overweight) adolescents reported greater desire for high-ED foods. Meal intake was greatest for the overweight, then lean-HR, then lean-LR groups.ConclusionsAdolescents at higher obesity risk exhibited reduced neural responses to high-ED food cues in a neural system that subserves attention and self-regulation. They also reported heightened appetitive responses to high-ED cues. Interventions that promote the capacity for self-regulation could prevent youth who have a familial predisposition for obesity from translating risk into reality.HighlightsFood words activate distributed emotion/reward system in adolescents.Greater obesity risk associated with less attentional/regulation system activation.Lean adolescents with overweight mothers show greater desire for high-energy foods.Meal intake progressively greater with increasing obesity risk.

    loading  Loading Related Articles