A transferable high-intensity intermittent exercise improves executive performance in association with dorsolateral prefrontal activation in young adults

    loading  Checking for direct PDF access through Ovid


Although growing attention has been drawn to attainable, high-intensity intermittent exercise (HIE)-based intervention, which can improve cardiovascular and metabolic health, for sedentary individuals, there is limited information on the impact and potential benefit of an easily attainable HIE intervention for cognitive health. We aimed to reveal how acute HIE affects executive function focusing on underlying neural substrates. To address this issue, we examined the effects of acute HIE on executive function using the color-word matching Stroop task (CWST), which produces a cognitive conflict in the decision-making process, and its neural substrate using functional near infrared spectroscopy (fNIRS). Twenty-five sedentary young adults (mean age: 21.0 ± 1.6 years; 9 females) participated in two counter-balanced sessions: HIE and resting control. The HIE session consisted of two minutes of warm-up exercise (50 W load at 60 rpm) and eight sets of 30 s of cycling exercise at 60% of maximal aerobic power (mean: 127 W ± 29.5 load at 100 rpm) followed by 30 s of rest on a recumbent-ergometer. Participants performed a CWST before and after the 10-minute exercise session, during both of which cortical hemodynamic changes in the prefrontal cortex were monitored using fNIRS. Acute HIE led to improved Stroop performance reflected by a shortening of the response time related to Stroop interference. It also evoked cortical activation related to Stroop interference on the left-dorsal-lateral prefrontal cortex (DLPFC), which corresponded significantly with improved executive performance. These results provide the first empirical evidence using a neuroimaging method, to our knowledge, that acute HIE improves executive function, probably mediated by increased activation of the task-related area of the prefrontal cortex including the left-DLPFC.HighlightsWe establish an attainable acute high-intensity intermittent exercise (HIE) model.We examine how acute HIE affects executive performance using a Stroop task.We investigate the neural substrate for HIE-induced behavioral changes with fNIRS.HIE-improved performance is related with boosted dorsolateral prefrontal activation.HIE improves executive function in relation with task-related prefrontal activation.

    loading  Loading Related Articles