Macroscale variation in resting-state neuronal activity and connectivity assessed by simultaneous calcium imaging, hemodynamic imaging and electrophysiology

    loading  Checking for direct PDF access through Ovid


Functional imaging of spontaneous activity continues to play an important role in the field of connectomics. The most common imaging signal used for these experiments is the blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) signal, but how this signal relates to spontaneous neuronal activity remains incompletely understood. Genetically encoded calcium indicators represent a promising tool to study this problem, as they can provide brain-wide measurements of neuronal activity compared to point measurements afforded by electrophysiological recordings. However, the relationship between the calcium signal and neurophysiological parameters at the mesoscopic scale requires further systematic characterization. Therefore, we collected simultaneous resting-state measurements of electrophysiology, along with calcium and hemodynamic imaging, in lightly anesthetized mice to investigate two aims. First, we examined the relationship between each imaging signal and the simultaneously recorded electrophysiological signal in a single brain region, finding that both signals are better correlated with multi-unit activity compared to local field potentials, with the calcium signal possessing greater signal-to-noise ratio and regional specificity. Second, we used the resting-state imaging data to model the relationship between the calcium and hemodynamic signals across the brain. We found that this relationship varied across brain regions in a way that is consistent across animals, with delays increasing by600 ms towards posterior cortical regions. Furthermore, while overall functional connectivity (FC) measured by the hemodynamic signal is significantly correlated with FC measured by calcium, the two estimates were found to be significantly different. We hypothesize that these differences arise at least in part from the observed regional variation in the hemodynamic response. In total, this work highlights some of the caveats needed in interpreting hemodynamic-based measurements of FC, as well as the need for improved modeling methods to reduce this potential source of bias.HighlightsWe acquired simultaneous electrophysiology and imaging in lightly anesthetized mice.Both calcium and hemodynamic signals are correlated with neuronal activity.Multi-unit activity was the best electrophysiological correlate of both signals.The hemodynamic versus calcium relationship varied significantly by brain region.Estimates of connectivity derived from two signals were correlated but different.

    loading  Loading Related Articles