Dynamic functional connectivity and its behavioral correlates beyond vigilance

    loading  Checking for direct PDF access through Ovid


Fluctuations in resting-state functional connectivity and global signal have been found to correspond with vigilance fluctuations, but their associations with other behavioral measures are unclear. We evaluated 52 healthy adolescents after a week of adequate sleep followed by five nights of sleep restriction to unmask inter-individual differences in cognition and mood. Resting state scans obtained at baseline only, analyzed using sliding window analysis, consistently yielded two polar dynamic functional connectivity states (DCSs) corresponding to previously reported ‘low arousal’ and ‘high arousal’ states. We found that the relative temporal preponderance of two dynamic connectivity states (DCS) in well-rested participants, indexed by a median split of participants, based on the relative time spent in these DCS, revealed highly significant group differences in vigilance at baseline and its decline following multiple nights of sleep restriction. Group differences in processing speed and working memory following manipulation but not at baseline suggest utility of DCS in predicting cognitive vulnerabilities unmasked by a stressor like sleep restriction. DCS temporal predominance was uninformative about mood and sleepiness speaking to specificity in its behavioral predictions. Global signal fluctuation provided information confined to vigilance. This appears to be related to head motion, which increases during periods of low arousal.Graphical abstractHighlightsTwo polar low & high arousal dynamic connectivity states are observed at baseline.Subjects spent a majority of time in the low arousal state.State dwell times predicted vigilance at baseline and following sleep restriction.Dwell times predicted processing speed & working memory after sleep restriction.Global signal is informative of vigilance; this may be conflated with motion.

    loading  Loading Related Articles