Implication of PTEN in production of reactive oxygen species and neuronal death inin vitromodels of stroke and Parkinson's disease

    loading  Checking for direct PDF access through Ovid


Oxidative stress plays crucial role in the pathogenesis of neurodegenerative diseases. However, the precise mechanism for an increased production of reactive oxygen species (ROS) under pathological conditions is not yet fully understood. We have recently demonstrated an implication of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), a tumor suppressor, in ROS generation and neuronal apoptosis induced by staurosporine. These findings raised further interest whether PTEN functions as a common mediator of oxidative stress in neurodegenerative processes. To address this issue, neural cells were exposed to oxygen-glucose deprivation (OGD) and to the neurotoxin 1-methyl-4-phenylpyridinium iodide (MPP+), which mimic cerebral ischemia and Parkinson's disease, respectively. OGD for 4 h followed by 16 h of reoxygenation or incubation with MPP+ (250 μM) for 48 h induced 33% and 45% neuronal death in rat hippocampal and in human dopaminergic SH-SY5Y neurons, respectively, accompanied by a gradual increase in the intracellular level of ROS. The increase in ROS by OGD and by MPP+ did not cause oxidative inactivation of PTEN and thus, PTEN remains constitutively active. In support, the protein level of PTEN was not reduced in both cell cultures after challenging with OGD or MPP+. Importantly, the elevated intracellular ROS levels and the neuronal death caused by OGD or by MPP+ toxicity were significantly inhibited when PTEN was downregulated by a specific antisense oligonucleotide or by siRNA. Because SOD2 protein level is not altered either by knockdown of PTEN nor by an inhibition of the PI3K/Akt signalling, we suggest that SOD2 do not contribute to the pathomechanism of oxidative stress induced by PTEN or by inhibiting the related Akt signalling. The present study highlights PTEN as a crucial and common mediator of ROS generation and neuronal death and suggests that PTEN could become a potential therapeutic target for interfering with neurodegeneration.

Related Topics

    loading  Loading Related Articles