Stimulation by neurotensin of dopamine and 5-hydroxytryptamine (5-HT) release from rat prefrontal cortex: Possible role of NTR1 receptors in neuropsychiatric disorders

    loading  Checking for direct PDF access through Ovid


The modulation of cortical dopaminergic and serotonergic neurotransmissions by neurotensin (NT) was studied by measuring the release of dopamine (DA) and 5-hydroxytryptamine (5-HT) from the prefrontal cortex (PFC) of freely moving rats. The samples were collected via transversal microdialysis. Dopamine and 5-HT levels in the dialysate were measured using high-performance liquid chromatography (HPLC) with an electrochemical detector. Local administration of neurotensin (1 μM or 0.1 μM) in the PFC via the dialysis probe produced significant, long-lasting, and concentration-dependent increase in the extracellular release of DA and 5-HT. The increase produced by 1 μM neurotensin reached a maximum of about 210% for DA and 340% for 5-HT. A high-affinity selective neurotensin receptor (NTR1) antagonist {2-[(1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxyphenyl)pyrazol-3yl)carbonylamino tricyclo ( decan-2-carboxylic acid} (SR 48692), perfused locally at a concentration of 0.1 μM and 0.5 μM in the PFC antagonized the effects of 1 μM neurotensin. Our in vivo neurochemical results indicate, for the first time, that neurotensin is able to regulate cortical dopaminergic and serotonergic neuronal activity in freely moving rats. These effects are possibly mediated by interactions of neurotensin with neurons releasing DA or 5-HT, projecting to the PFC from the ventrotegmental area (VTA) and from the dorsal raphe nuclei (DRN), respectively. The potentiating effects of neurotensin on DA and 5-HT release in the PFC are regulated by NTR1 receptors, probably located on dopaminergic and serotonergic nerve terminals or axons.

Related Topics

    loading  Loading Related Articles