Ghrelin amplifies the nicotine-induced dopamine release in the rat striatum

    loading  Checking for direct PDF access through Ovid


The orexigenic peptide ghrelin plays a prominent role in the regulation of energy balance and in the mediation of reward mechanisms and reinforcement for addictive drugs, such as nicotine. Nicotine is the principal psychoactive component in tobacco, which is responsible for addiction and relapse of smokers. Nicotine activates the mesencephalic dopaminergic neurons via nicotinic acetylcholine receptors (nAchR). Ghrelin stimulates the dopaminergic neurons via growth hormone secretagogue receptors (GHS-R1A) in the ventral tegmental area and the substantia nigra pars compacta resulting in the release of dopamine in the ventral and dorsal striatum, respectively. In the present study an in vitro superfusion of rat striatal slices was performed, in order to investigate the direct action of ghrelin on the striatal dopamine release and the interaction of ghrelin with nicotine through this neurotransmitter release. Ghrelin increased significantly the dopamine release from the rat striatum following electrical stimulation. This stimulatory effect was reversed by both the selective nAchR antagonist mecamylamine and the selective GHS-R1A antagonist GHRP-6. Nicotine also increased significantly the dopamine release under the same conditions. This stimulatory effect was antagonized by mecamylamine, but not by GHRP-6. Ghrelin further stimulated the nicotine-induced dopamine release and this effect was abolished by mecamylamine and was partially inhibited by GHRP-6. The present results demonstrate that ghrelin stimulates directly the dopamine release and amplifies the nicotine-induced dopamine release in the rat striatum. We presume that striatal cholinergic interneurons also express GHS-R1A, through which ghrelin can amplify the nicotine-induced dopamine release in the striatum. This study provides further evidence of the impact of ghrelin on the mesolimbic and nigrostriatal dopaminergic pathways. It also suggests that ghrelin signaling may serve as a novel pharmacological target for treatment of addictive and neurodegenerative disorders.

Related Topics

    loading  Loading Related Articles