The mechanisms regulating cyclin-dependent kinase 5 in hippocampus during systemic inflammatory response: The effect on inflammatory gene expression

    loading  Checking for direct PDF access through Ovid


Cyclin-dependent kinase 5 (Cdk5) is critical for nervous system's development and function, and its aberrant activation contributes to pathomechanism of Alzheimer's disease and other neurodegenerative disorders. It was recently suggested that Cdk5 may participate in regulation of inflammatory signalling. The aim of this study was to analyse the mechanisms involved in regulating Cdk5 activity in the brain during systemic inflammatory response (SIR) as well as the involvement of Cdk5 in controlling the expression of inflammatory genes. Genetic and biochemical alterations in hippocampus were analysed 3 and 12 h after intraperitoneal injection of lipopolysaccharide. We observed an increase in both Cdk5 gene expression and protein level. Moreover, phosphorylation of Cdk5 on Ser159 was significantly enhanced. Also transcription of Cdk5-regulatory protein (p35/Cdk5r1) was augmented, and the level of p25, calpain-dependent cleavage product of p35, was increased. All these results demonstrated rapid activation of Cdk5 in the brain during SIR. Hyperactivity of Cdk5 contributed to enhanced phosphorylation of tau and glycogen synthase kinase 3β. Inhibition of Cdk5 with Roscovitine reduced activation of NF-κB and expression of inflammation-related genes, demonstrating the critical role of Cdk5 in regulation of gene transcription during SIR.

Related Topics

    loading  Loading Related Articles