Role of dopamine D1 receptor in 3-fluoromethamphetamine-induced neurotoxicity in mice

    loading  Checking for direct PDF access through Ovid


3-Fluoromethamphetamine (3-FMA) is an illegal designer drug of methamphetamine (MA) derivative. Up to date, little is known about the neurotoxic potential of 3-FMA. In the present study, we investigated the role of dopamine receptors in neurotoxicity induced by 3-FMA in comparison with MA (35 mg/kg, i.p.) as a control drug. Here we found that 3-FMA (40, 60 or 80 mg/kg, i.p.) produced mortality in a dose-dependent manner in mice. Treatment with 3-FMA (40 mg/kg, i.p.) resulted in significant hyperthermia, oxidative stress and microgliosis (microglial differentiation into M1 phenotype) followed by pro-apoptotic changes and the induction of terminal deoxynucleotidyl transferase dUDP nick end labeling (TUNEL)-positive cells. Moreover, 3-FMA significantly produced dopaminergic impairments [i.e., increase in dopamine (DA) turnover rate and decreases in DA level, and in the expression of tyrosine hydroxylase (TH), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT-2)] with behavioral impairments. These dopaminergic neurotoxic effects of 3-FMA were comparable to those of MA. SCH23390, a dopamine D1 receptor antagonist, but not sulpiride, a dopamine D2 receptor antagonist significantly attenuated 3-FMA-induced neurotoxicity. Although both SCH23390 and sulpiride attenuated MA-induced dopaminergic neurotoxicity, sulpiride is more effective than SCH23390 on the dopaminergic neurotoxicity. Interestingly, SCH23390 treatment positively modulated 3-FMA-induced microglial activation (i.e., SCH23390 inhibited M1 phenotype from 3-FMA insult, but activated M2 phenotype). Therefore, our results suggest that the activation of dopamine D1 receptor is critical to 3-FMA-induced neurotoxicity, while both dopamine D1 and D2 receptors (dopamine D2 receptor > dopamine D1 receptor) mediate MA-induced dopaminergic neurotoxicity.

    loading  Loading Related Articles