Hippocampal Gαq/11 but not Gαo-coupled receptors are altered in aging

    loading  Checking for direct PDF access through Ovid

Abstract

Normal aging may limit the signaling efficacy of certain GPCRs by disturbing the function of specific Gα-subunits and leading to deficient modulation of intracellular functions that subserve synaptic plasticity, learning and memory. Evidence suggests that Gαq/11 is more sensitive to the effects of aging relative to other Gα-subunits, including Gαo. To test this hypothesis, the functionality of Gαq/11 and Gαo were compared in the hippocampus of young (6 months) and aged (24 months) F344 × BNF1 hybrid rats assessed for spatial learning ability. Basal GTPγS-binding to Gαq/11 was significantly elevated in aged rats relative to young and but not reliably associated with spatial learning. mAChR stimulation of Gαq/11 with oxotremorine-M produced equivocal GTPγS-binding between age groups although values tended to be lower in the aged hippocampus and were inversely related to basal activity. Downstream Gαq/11 function was measured in hippocampal subregion CA1 by determining changes in [Ca2+]i after mAChR and mGluR (DHPG) stimulation. mAChR-stimulated peak change in [Ca2+]i was lower in aged CA1 relative to young while mGluR-mediated integrated [Ca2+]i responses tended to be larger in aged. GPCR modulation of [Ca2+]i was observed to depend on intracellular stores to a greater degree in aged than young. In contrast, measures of Gαo-mediated GTPγS-binding were stable across age, including basal, mAChR-, GABABR (baclofen)-stimulated levels. Overall, the data indicate that aging selectively modulates the activity of Gαq/11 within the hippocampus leading to deficient modulation of [Ca2+]i following stimulation of mAChRs but these changes are not related to spatial learning.

Related Topics

    loading  Loading Related Articles