Perinatal reduction of functional serotonin transporters results in developmental delay

    loading  Checking for direct PDF access through Ovid


While there is strong evidence from rodent and human studies that a reduction in serotonin transporter (5-HTT) function in early-life can increase the risk for several neuropsychiatric disorders in adulthood, the effects of reduced 5-HTT function on behavior across developmental stages are underinvestigated. To elucidate how perinatal pharmacological and lifelong genetic inactivation of the 5-HTT affects behavior across development, we conducted a battery of behavioral tests in rats perinatally exposed to fluoxetine or vehicle and in 5-HTT−/− versus 5-HTT+/+ rats. We measured motor-related behavior, olfactory function, grooming behavior, sensorimotor gating, object directed behavior and novel object recognition in the first three postnatal weeks and if possible the tests were repeated in adolescence and adulthood. We also measured developmental milestones such as eye opening, reflex development and body weight. We observed that both pharmacological and genetic inactivation of 5-HTT resulted in a developmental delay. Except for hypo-locomotion, most of the observed early-life effects were normalized later in life. In adolescence and adulthood we observed object directed behavior and decreased novel object recognition in the 5-HTT−/− rats, which might be related to the lifelong inactivation of 5-HTT. Together, these data provide an important contribution to the understanding of the effects of perinatal and lifelong 5-HTT inactivation on behavior across developmental stages.

Related Topics

    loading  Loading Related Articles