The role of polyunsaturated fatty acids and GPR40 receptor in brain

    loading  Checking for direct PDF access through Ovid

Abstract

Polyunsaturated fatty acids (PUFAs) are found in abundance in the nervous system. They perform significant functions for example boosting synaptogenesis, neurogenesis, inducing antinociception, stimulating gene expression and neuronal activity, preventing apoptosis and neuroinflammation. G-protein-coupled receptor 40 (GPR40), also called free fatty acid receptor 1 (FFA1), is ubiquitously expressed in various regions of the human brain including the olfactory bulb, midbrain, medulla oblongata, hippocampus, hypothalamus, cerebral cortex, cerebellum and in the spinal cord. GPR40, when binding with polyunsaturated fatty acids (PUFAs) has shown promising therapeutic potential. This review presents current knowledge regarding the pharmacological properties of GPR40 and addresses its functions in brain, with a focus on neurodevelopment & neurogenesis. Furthermore, the demonstration of GPR40 involvement in several neuropathological conditions such as apoptosis, inflammatory pain, Alzheimer's disease and Parkinson's disease. Although the results are encouraging, further research is needed to clarify their role in the treatment of inflammatory pain, Alzheimer's disease and Parkinson's disease.

This article is part of the Special Issue entitled ‘Lipid Sensing G Protein-Coupled Receptors in the CNS’.

Related Topics

    loading  Loading Related Articles