Environmental enrichment protects against stress-induced anxiety: Role of glucocorticoid receptor, ERK, and CREB signaling in the basolateral amygdala

    loading  Checking for direct PDF access through Ovid

Abstract

Environmental enrichment (EE) is an experimental animal model that enhances an animal's opportunity to interact with sensory, motor, and social stimuli, compared to standard laboratory conditions. A prominent benefit of EE is the reduction of stress-induced anxiety. The relationship between stress and the onset of anxiety-like behavior has been widely investigated in experimental research, showing a clear correlation with structural changes in the hippocampus and basolateral amygdala (BLA). However, the mechanisms by which EE exerts its protective roles in stress and anxiety remain unclear, and it is not known whether EE reduces the effects of acute stress on animal behavior shortly following the cessation of stress. We found that EE can prevent the emergence of anxiety-like symptoms in rats measured immediately after acute restraint stress (1 h) and this effect is not due to changes in systemic release of corticosterone. Rather, we found that stress promotes a rapid increase in the nuclear translocation of glucocorticoid receptor (GR) in the BLA, an effect prevented by previous EE exposure. Furthermore, we observed a reduction of ERK (a MAPK protein) and CREB activity in the BLA promoted by both EE and acute stress. Finally, we found that EE decreases the expression of the immediate-early gene EGR-1 in the BLA, indicating a possible reduction of neuronal activity in this region. Hyperactivity of BLA neurons has been reported to accompany anxiety-like behavior and changes in this process may be one of the mechanism by which EE exerts its protective effects against stress-induced anxiety.

Related Topics

    loading  Loading Related Articles