The role of the amygdala and the basal ganglia in visual processing of central vs. peripheral emotional content

    loading  Checking for direct PDF access through Ovid


In human cognition, most relevant stimuli, such as faces, are processed in central vision. However, it is widely believed that recognition of relevant stimuli (e.g. threatening animal faces) at peripheral locations is also important due to their survival value. Moreover, task instructions have been shown to modulate brain regions involved in threat recognition (e.g. the amygdala). In this respect it is also controversial whether tasks requiring explicit focus on stimulus threat content vs. implicit processing differently engage primitive subcortical structures involved in emotional appraisal.

Here we have addressed the role of central vs. peripheral processing in the human amygdala using animal threatening vs. non-threatening face stimuli. First, a simple animal face recognition task with threatening and non-threatening animal faces, as well as non-face control stimuli, was employed in naïve subjects (implicit task). A subsequent task was then performed with the same stimulus categories (but different stimuli) in which subjects were told to explicitly detect threat signals.

We found lateralized amygdala responses both to the spatial location of stimuli and to the threatening content of faces depending on the task performed: the right amygdala showed increased responses to central compared to left presented stimuli specifically during the threat detection task, while the left amygdala was better prone to discriminate threatening faces from non-facial displays during the animal face recognition task. Additionally, the right amygdala responded to faces during the threat detection task but only when centrally presented. Moreover, we have found no evidence for superior responses of the amygdala to peripheral stimuli. Importantly, we have found that striatal regions activate differentially depending on peripheral vs. central processing of threatening faces. Accordingly, peripheral processing of these stimuli activated more strongly the putaminal region, while central processing engaged mainly the caudate nucleus.

We conclude that the human amygdala has a central bias for face stimuli, and that visual processing recruits different striatal regions, putaminal or caudate based, depending on the task and on whether peripheral or central visual processing is involved.

Related Topics

    loading  Loading Related Articles