Neural correlates of taste perception in congenital blindness

    loading  Checking for direct PDF access through Ovid

Abstract

Sight is undoubtedly important for the perception and the assessment of the palatability of tastants. Although many studies have addressed the consequences of visual impairment on food selection, feeding behavior, eating habits and taste perception, nothing is known about the neural correlates of gustation in blindness. In the current study we examined brain responses during gustation using functional magnetic resonance imaging (fMRI). We scanned nine congenitally blind and 14 age- and sex-matched blindfolded sighted control subjects, matched in age, gender and body mass index (BMI), while they made judgments of either the intensity or the (un)pleasantness of different tastes (sweet, bitter) or artificial saliva that were delivered intra-orally. The fMRI data indicated that during gustation, congenitally blind individuals activate less strongly the primary taste cortex (right posterior insula and overlying Rolandic operculum) and the hypothalamus. In sharp contrast with results of multiple other sensory processing studies in congenitally blind subjects, including touch, audition and smell, the occipital cortex was not recruited during taste processing, suggesting the absence of taste-related compensatory crossmodal responses in the occipital cortex. These results underscore our earlier behavioral demonstration that congenitally blind subjects have a lower gustatory sensitivity compared to normal sighted individuals. We hypothesize that due to an underexposure to a variety of tastants, training-induced crossmodal sensory plasticity to gustatory stimulation does not occur in blind subjects.

Related Topics

    loading  Loading Related Articles